| P4.6-2) ^{fe} A disk with radius r rolls without slipping on a horizontal surface. If the speed of the disk's center is v_C , in the direction shown, determine the velocity of point B and D in terms of the center speed. | O D | |--|-------------------| | Given: | r C v_c B | | Find: | Ā | | Solution: | P4.6-2 | | Relate the angular speed of the disk to $v_{\rm C}$ and the disk radius. | | | | | | | | | | | | ω = | | | Calculate the velocity of point B as a function of v_C . | | | Draw \mathbf{v}_B on the figure. | | | Diaw v _B on the figure. | | | | | | | | | | | | | | | $\mathbf{v}_B = \underline{\hspace{1cm}}$ | | | Calculate the velocity of point D as a function of v_C . | | | Draw \mathbf{v}_D on the figure. | | | | | | | | | | | | | | | | | $\mathbf{v}_D = \underline{\hspace{1cm}}$